SUPERMICE Accelerate Everything

Large Language Models (LLM) to the AI Edge

THUE

and a second second

AI GPU Solution Portfolio

Unlock Unprecedented Performance Leveraging GPU Optimized Systems

GPU technology can bring unprecedented performance to a broad spectrum of workloads – up to 5X, 10X, ... 100X improvements in performance and efficiency. These workloads span from the rapidly growing generative AI market to enterprise inferencing, product design, visualization, and to the intelligent edge. Supermicro has built a portfolio of workload-optimized systems for optimal GPU performance and efficiency across this broad spectrum of workloads.

TABLE OF CONTENTS

01	LARGE SCALE AI TRAINING WORKLOADS	4
02	HPC/AI WORKLOADS	8
03	ENTERPRISE AI INFERENCING & TRAINING	18
04	VISUALIZATION AND OMNIVERSE WORKLOADS	24
05	VIDEO DELIVERY WORKLOADS	30
06	AI EDGE WORKLOADS	38
	SUPERMICRO SYSTEM COMPATIBILITY	43


#1 GPU SOLUTIONS IN THE MARKET

8U HGX H100 8-GPU System

(Codenamed: Delta-Next)

- Large Language Models (LLM)
- 900GB/s NVLink 7x better performance than PCIe
- 1:1 networking slots for GPUs up to 400Gbps each

SuperBlade[®]

- Up to 20 GPUs in 8U
- Highest Density
- Multi-Node Architecture

2U MGX System

 Modular Building Block Platform Supporting Today's and Future GPUs, CPUs, and DPUs

4U HGX H100 4-GPU System

(Codenamed: Redstone-Next)

- HPC/AI Workloads
- Double-precision Tensor Cores delivering up to 268 teraFLOPS
- Superior thermal design and liquid cooling option

Petabyte Scale Storage

- Maximum density design to support up to 1PB in 2U
- Up to 32 E3.S NVMe drives in 2U

1U Grace Hopper System CPU+GPU Coherent Memory System

¹ Large Scale Al Training Workloads

Generative AI, Natural Language Processing (NLP), Computer Vision

Workload Sizes

Extra Large

Liquid Cooled Al Rack Solutions NVIDIA HGX H100 SXM 8-GPU Up to 80 kW/Rack

Medium

4U 4-GPU System (Codenamed: Redstone-Next) NVIDIA HGX H100 SXM 4-GPU

Large

8U 8-GPU System (Codenamed: Delta-Next) NVIDIA HGX H100 SXM 8-GPU

Storage

Petabyte Scale Storage High throughput and High Capacity for AI Data Pipeline

Use Cases

- Large Language Models (LLMs)
- Autonomous Driving Training
- Recommender Systems

Opportunities and Challenges

- · Continuous growth of data set size
- High performance everything: GPUs, memory, storage and network fabric
- Pool of GPU memory to fit large AI models and interconnect bandwidth for fast training

Key Technologies

- NVIDIA HGX H100 SXM 8-GPU/4-GPU
- GPU/GPU interconnect (NVLink and NVSwitch), up to 900GB/s 7x greater than PCIe 5.0
- Dedicated high performance, high capacity GPU memory
- High throughput networking and storage per GPU enabling NVIDIA GPUDirect RDMA and Storage.

Solution Stack

- DL Frameworks: TensorFlow, PyTorch
- Transformers: BERT, GPT, Vision Transformer
- NVIDIA AI Enterprise Frameworks (NVIDIA Nemo, Metropolis, Riva, Morpheus, Merlin
- NVIDIA Base Command (infrastructure software libraries, workload orchestration, cluster management)
- High performance storage (NVMe) for training cache
- Scale-out storage for raw data (data lake)

HGX H100 Systems

- H100 SXM5 board with 4-GPU or 8-GPU
- NVLink & NVSwitch Fabric
- Up to 700W per GPU

AI Rack Solutions

Multi-Architecture Flexibility with Future-Proof Open-Standards-Based Design for POD, and SuperPOD with Liquid Cooling

Benefits & Advantages

- Proven AI rack cluster deployment in some of the world's largest AI clusters
- AI POD, SuperPOD customizable architecture
- Turn-key proven solutions accelerates time to market
- Traditional, free-air and liquid cooled configurations for optimal TCE/TCO

- Factory integrated and fully tested multi-rack cluster
- Server, storage, networking, software, management total solutions designed, built and deployed to your specification
- Rack Scale L11/L12 testing and validation
- Factory tuned power and cooling design
- Single source liquid cooling solution available with reduced (weeks) lead time

HGX H100 Systems

Multi-Architecture Flexibility with Future-Proof Open-Standards-Based Design

Medium 40 4-GPU

(Codenamed: RedStone-Next) NVIDIA HGX H100 SXM 4-GPU 6 U.2 NVMe Drives 8 PCle 5.0 x16 networking slots _{SYS-421GU-TNXR}

Benefits & Advantages

- High performance GPU interconnect up to 900GB/s 7x better performance than PCIe
- Superior thermal design supports maximum power/performance CPUs and GPUs
- Dedicated networking and storage per GPU with up to double the NVIDIA GPUDirect throughput of the previous generation
- Modular architecture for storage and I/O configuration flexibility with front and rear I/O options

Large 8U 8-GPU

(Codenamed: Delta-Next) NVIDIA HGX H100 SXM 8-GPU 16 U.2 NVMe Drives 8 PCIe 5.0 x16 networking slots SYS-821GE-TNHR/AS-8125GS-TNHR

- 4 or 8 next-generation H100 SXM GPUs with NVLink, NVSwitch interconnect
- Dual 4th Gen Intel[®] Xeon[®] Scalable processors or AMD EPYC[™] 9004 series processors
- Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1+
- Innovative modular architecture designed for flexibility and futureproofing in 8U or 4U.
- Optimized thermal capacity and airflow to support CPUs up to 350W and GPUs up to 700W with air cooling and optional liquid cooling
- PCle 5.0 x16 1:1 networking slots for GPUs up to 400Gbps each supporting GPUDirect Storage and RDMA and up to 16 U.2 NVMe drive bays

Petabyte Scale NVMe Flash

High Throughput and High Capacity Storage for AI Data Pipeline

1U 24-Bay E1.S

SSG-121E-NES24R

Benefits & Advantages

- Maximum density design to support up to 1PB in 2U with next-generation drives
- Direct-attached EDSFF E3.S media for the best thermal and I/O performance
- Flexible topology allows distribution of PCIe lanes based on performance and density requirements

1U 16-Bay E3.S ssg-121E-NE316R/ASG-1115S-NE316R

2U 24/32-Bay E3.S SSG-221E-NE324R/ASG-2115S-NE332R

- Dual 4th Gen Intel Xeon Scalable processors or single AMD EPYC[™] 9004 Series processor
- Up to 32 E3.S NVMe drives in 2U
- Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1+

Petabyte Scale HDD

Top-Loading Data Lake Storage

Benefits & Advantages

- Fully redundant dual-ported high availability/failover clustering for use with Parallel File Systems
- Dual ported SAS architecture with 60 and 90 Bay configurations
- Top-loading drawer with tool-less drive brackets for easy servicing and maintenance
- Industry standard SAS controllers and expander infrastructure to support the most popular SDS platforms like ZFS and Lustre

4U 60/90-Bay Top-Loading SSG-640SP-E1CR60/SSG-640SP-E1CR90

- Two hot-pluggable system nodes
- Dual 3rd Gen Intel[®] Xeon[®] Scalable processors per node
- 3 PCIe 4.0 x16 slots per node for I/O

² HPC/Al Workloads

Simulation: Stress Analysis, Aerodynamics, Device Performance Prediction, Fluid Dynamics, Research, Exploration, Weather Prediction

Workload Sizes

Large

8U 8-GPU or 4U 4-GPU System (Codename: Delta-Next and Redstone Next) NVIDIA HGX H100 SXM 8-GPU or 4-GPU

SuperBlade[®] Highest Density Multi-Node Architecture

Medium

4U/5U 8-10 GPU PCIe Maximum Performance and Flexibility

1U Grace Hopper System CPU+GPU Coherent Memory System

Use Cases

- Manufacturing and engineering simulations (CAE, CFD, FEA, EDA)
- Bio/life sciences (genomic sequencing, molecular simulation, drug discovery)
- Scientific simulations (astrophysics, energy exploration, climate modeling, weather forecasting)

Opportunities and Challenges

- Infusing machine learning algorithms to HPC workloads to achieve faster results and discoveries with more iterations.
- Parallel processing with massive datasets for data-intensive simulations and analytics
- High-resolution and real-time visualization of scientific simulations and modeling

Key Technologies

- NVIDIA H100 (SXM, NVL, PCIe), L40S, A100
- NVIDIA Grace Hopper[™] Superchip (Grace CPU and H100) with NVLink[®] Chip-2-Chip (C2C) interconnect and NVLink Network (up to 256 GPUs)
- Dual socket Intel and AMD-based solutions with high CPU core counts
- CPUs integrated with High Bandwidth Memory/bigger L3 cache
- PCle 5.0 storage and networking
- Liquid cooling

Solution Stack

- NVIDIA HPC Software Development Kit (SDK)
- NVIDIA CUDA
- Commercial and in-house CAE software

HGX H100, H100 NVL, and H100 PCIe

- H100 SXM5 board with 4-GPU or 8-GPU (HGX H100)
- NVLink & NVSwitch Fabric (HGX H100)
- NVLink Bridge (H100 NVL or H100 PCle)
 80GB HBM3 (HGX H100 or H100 PCle),
- 96GB HBM3 (H100 NVL) per GPU

GRACE HOPPER SUPERCHIP

Grace Arm Neoverse V2 CPU NVIDIA H100 with NVLink-C2C Up to 480GB LPDDR5X and 96GB HBM3

L40S FHFL DW PCIe 4.0 x16 300W 48GB GDDR6

HGX H100 Systems

Designed for Largest AI-fused HPC Clusters

Benefits & Advantages

- Double-precision Tensor Cores delivering up to 535/268 teraFLOPS at FP64 in the 8-GPU/4-GPU respectively.
- TF32 precision to reach nearly 8000 teraFLOPs for single-precision matrixmultiplication
- Superior thermal design and liquid cooling option supports maximum power/perfomance CPUs and GPUs.
- Dedicated networking and storage per GPU with up to double the NVIDIA GPUDirect throughput of the previous generation

4U 4-GPU

(Codenamed: Redstone-Next) NVIDIA HGX H100 SXM 4-GPU 6 U.2 NVMe Drives 8 PCIe 5.0 x16 networking slots SYS-421GU-TNXR

- 4 or 8 H100 SXM GPUs with NVLink, interconnect with up to 900GB/s
- Dual 4th Gen Intel Xeon Scalable processors or AMD EPYC 9004 Series processors
- Supports PCIe 5.0, DDR5, and Compute Express Link (CXL) 1.1+
- Innovative modular architecture designed for flexibility and futureproofing in 8U, 5U, or 4U
- Optimized thermal capacity and airflow to support CPUs up to 350W and GPUs up to 700W with air cooling and optional liquid cooling
- PCIe 5.0 x16 1:1 networking slots for GPUs up to 400 Gbps each supporting GPUDirect Storage and RDMA, and up to 16 U.2 NVMe drive bays, high throughput data pipeline and clustering

8U SuperBlade®

SuperBlade[®] - Highest Density Multi-Node Architecture for HPC, AI and Cloud Applications

Benefits & Advantages

- Up to 20 nodes in 8U 100 blades per rack
- Single NVIDIA H100 PCIe GPU per blade
- High CPU to GPU ratio
- Integrated power, cooling, switch and management console
- Up to 95% cable reduction compared to traditional rackmount servers

8U SuperBlade® 1 NVIDIA H100 PCIe 2 M.2 NVMe Drives 2 E1.S Drives 200G HDR InfiniBand SBI-411E-16/56

- 1 H100 or L40S PCIe GPU per blade
- Single 4th Gen Intel[®] Xeon[®] Scalable processor per blade
- Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1
- Flexible storage options including U.2 NVMe, SAS including M.2 NVMe and EDSFF E1.S
- Shared power, cooling and switch for maximum efficiency with optional liquid cooling
- 2-port 25GbE (3rd and 4th LAN), 1x 200G HDR InfiniBand or 1x 100G EDR InfiniBand via mezzanine card

1U Grace Hopper MGX Systems

CPU+GPU Coherent Memory System for AI and HPC Applications

Benefits and Advantages

- 72-core ARM CPU and H100 GPU combined with coherent memory
- NVLink[®] Chip-2-Chip (C2C) high-bandwidth and lowlatency interconnect and NVLink Network (up to 256 NVLink-connected GPUs)
- Energy efficient 1000W per Grace Hopper Superchip (CPU + GPU + memory).
- Air cooling and Liquid cooling option
- 3 PCIe 5.0 x16 slots, 8 hot-swap E1.S and 2 M.2 slots

1U Grace Hopper MGX System

(Codenamed: CG1) 1 NVIDIA Grace Hopper SuperChip (ARM CPU and H100 with 96GB HBM3) 8 E1.S + 2 M.2 drives 480GB LPDDR5X 200G HDR InfiniBand ARS-111GL-NHR

- Grace ARM Neoverse V2 CPU + H100 Tensor Core GPU in a single chip
- Up to 96GB HBM3 and 480GB LPDDR5X integrated memory
- NVLink-C2C with coherent memory to enable 900GB/s of total bandwidth and up to 576GB (480GB + 96GB) of fast-access memory available to the GPU
- NVLink Network with 256 connected GPUs can access up to 150TB of memory at high bandwidth
- 3 PCIe 5.0 x16 slots, 8 hot-swap E1.S and 2 M.2 slots

10 GPU Systems

4U/5U 8 or 10 GPU PCIe - Maximum Performance and Flexibility

Benefits & Advantages

- 13 PCIe 5.0 x16 slots with up to 10 PCIe FHFL GPUs supporting 8 NVIDIA H100 NVL (4 NVLink Bridge pairs) or 10 H100 PCIe GPUs.
- 4U or 5U configurations with superior thermal design supporting max power/performance CPUs and GPUs at up to 32°C ambient temperature with optional air cooling
- <u>Single Root, Dual Root or Direct</u> <u>Connect GPU configurations</u>

5U 8 - 10 GPU 8 H100 NVL 8 NVMe + 8 SATA drives 4-5 PCle 5.0 x16 networking slots SYS-521GE-TNRT

Key Features

- Up to 8 or 10 H100 PCIe GPUs with optional NVLink Bridge (H100 NVL), or up to 10 L40S
- Dual 4th Gen Intel Xeon Scalable processors or AMD EPYC 9004 Series processors
- Supports PCIe 5.0 DDR5 and Compute Express Link 1.1+
- Configurable with 2 400G networking per root (4 for Dual Root) and Advanced I/O Module (AIOM) slot for high throughput data pipeline and clustering

4U 10-GPU 10 H100 PCle 8 NVMe + 8 SATA drives 4-5 PCle 5.0 x16 networking slots sys-421GE-TNRT / AS -4125GS-TNRT

Generative AI Inference, Large Language Model Inference, Speech Recognition, Recommendation, Computer Vision

Workload Sizes

Extra Large

4U/5U 8-10 GPU PCIe GPU-based Inference and Training

Large

6U SuperBlade® High Density, Disaggregated

Medium

2U MGX System Modular Building Block Platform Supporting Today's and Future GPUs, CPUs, and DPUs

2U Grace MGX System (*Codenamed: C2*) Modular Building Block Platform with Energy-efficient Grace CPU Superchip

Use Cases

- Content creation (image, audio, video, writing)
- Al-enabled office applications and services
- Enterprise business process automation

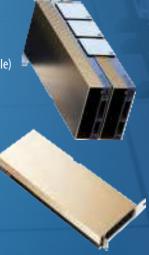
Opportunities and Challenges

- Total solution complexity
- Open architecture, vendor flexibility, and fast deployment for rapidly evolving technologies
- High computational and resource costs, cloud vs. on-prem
- Utilization of frameworks, pre-trained or open-source Al models with fine-tuning

Key Technologies

- NVIDIA H100 (NVL, PCIe), A100, L40S, L40, and L4 GPUs
- PCle 5.0 storage and networking
- Intel and AMD CPU options
- NVIDIA Grace[™] Superchip (2 Grace CPUs on one Superchip) with NVLink[®] Chip-2-Chip (C2C) interconnect
- Flexible rackmount servers from 1U to 6U to balance compute, storage, and networking for various enterprise AI workload needs

Solution Stack


- NVIDIA AI Enterprise software
- NVIDIA NGC[™] catalog: containers, pre-trained models
- RedHat OpenShift, VMWare

H100 NVL

2 FHFW H100 GPU with NVLink Bridge (4x faster than PCIe) PCIe 5.0 x16 400W per GPU 94GB HBM3 per GPU

H100 PCIE

FHFL DW PCIe 5.0 x16 300W per GPU 80GB HBM2<u>e</u>

L40S\L40

FHFL DW PCle 4.0 x16 350W (L40S)/300W (L40) 48GB GDDR6 L4 HHHL SW PCIe 4.0 x16 72W 24GB GDDR6

10 GPU Systems

4U/5U 8 or 10 GPU PCIe — Highly Flexible Architecture

Benefits & Advantages

- Up to 13 PCIe 5.0 slots for flexible GPUs, I/O and networking options
- 4U or 5U configurations with superior thermal design supporting max power/performance CPUs and GPUs at up to 32°C ambient temperature with air cooling
- <u>Single Root, Dual Root or Direct Connect GPU</u> <u>configurations</u>

8-10 GPU (PCle) 8 NVIDIA H100 NVL or 10 H100 PCle 8 NVMe and 8 SATA Drives 32 DIMMs DDR5-4800 sys-421GE-TNRT/AS -4125GS-TNRT/SYS-521GE-TNRT

- Up to 8 or 10 H100 PCle GPUs with optional NVLink Bridge (H100 NVL), or L40S
- Dual 4th Gen Intel[®] Xeon[®] Scalable processors or AMD EPYC[™] 9004 Series processors
- Supports PCle 5.0, DDR5 and Compute Express Link (CXL) 1.1+
- Optimized thermal capacity and airflow to support CPUs up to 350W and GPUs up to 700W with air cooling.

6U SuperBlade[®]

SuperBlade[®] - Highest Density Multi-Node Architecture for HPC, AI and Cloud Applications

Benefits & Advantages

- Up to 10 single-width nodes in 6U with up to 2 GPUs per blade, or 5 double-width nodes with up to 4 GPUs per blade
- Integrated power, cooling, switch and management console
- Up to 95% cable reduction compared to traditional rackmount servers
- High CPU to GPU Ratio

Key Features

- Up to 2 H100 PCIe or L40S GPUs per blade
- Single 4th Gen Intel[®] Xeon[®] Scalable processor per blade
- Supports PCIe 5.0, DDR5 and Compute Express Link (CXL) 1.1+
- Flexible storage options including U.2 (NVMe, SAS, SATA), M.2 (SATA/ NVMe), and EDSFF E1.S
- Shared power, cooling and switch for maximum efficiency with optional liquid cooling
- Flexible networking up to 400G NDR InfiniBand

6U SuperBlade®

2 NVIDIA H100 PCIe 2 U.2 NVMe Drives 3 M.2 NVMe Drives 2 E1.S Drives 2x25GbE LOM SBI-611E-ST2N

2U MGX Systems

Modular Building Block Platform Supporting Today's and Future GPUs, CPUs, and DPUs

Benefits & Advantages

- NVIDIA MGX reference design enabling to construct a wide array of platforms and configurations
- 7 PCle 5.0 x16 slots in 2U with up to 4 PCle FHFL DW GPUs and 3 NICs or DPUs.
- Supports both ARM and x86-based configurations and is compatible with current and future generations of GPUs, CPUs and DPUs

2U MGX System 4 NVIDIA H100 PCIe or NVL 8 E1.S + 2 M.2 drives 16 DIMMs DDR5-4800 SYS-221GE-NR

- Up to 4 H100 PCIe GPUs with optional NVLink Bridge (H100 NVL), L40S, or L40
- Up to 3 NVIDIA ConnectX-7 400G NDR InfiniBand cards or 3 NVIDIA BlueField[®]-3 cards
- Dual 4th Gen Intel Xeon Scalable processors
- 8 hot-swap E1.S and 2 M.2 slots
- Front I/O and Rear I/O configuration
- Supports PCIe 5.0 DDR5 and Compute Express Link 1.1+

2U Grace MGX System

Modular Building Block Platform with Energy-efficient Grace CPU Superchip

Benefits & Advantages

- Two NVIDIA Grace CPUs on one Superchip with 144-core and up to 500W CPU TDP
- 900GB/s NVLink[®] Chip-2-Chip (C2C) highbandwidth and low-latency interconnect between Grace CPUs
- NVIDIA MGX reference design enabling to construct a wide array of platforms and configurations
- 7 PCle 5.0 x16 slots in 2U with up to 4 PCle FHFL DW GPUs and 3 NICs or DPUs.

2U Grace MGX System (Codenamed: C2) 4 NVIDIA H100 PCIe, NVL, or L40S 8 E1.S + 2 M.2 drives 960GB LPDDR5X ARS-221GL-NR

- Up to 144 high-performance Arm Neoverse V2 Cores with up to 960GB LPDDR5X onboard memory
- Up to 4 H100 PCIe GPUs with optional NVLink Bridge (H100 NVL), L40S, or L40
- Up to 3 NVIDIA ConnectX-7 400G NDR InfiniBand cards or 3 NVIDIA BlueField®-3 cards
- 8 hot-swap E1.S and 2 M.2 slots
 Front I/O and Rear I/O configuration

4 Visualization and Omniverse Workloads

Real-Time Collaboration, 3D Design, Game Development

Workload Sizes

4U/5U 8 GPU Tailored Architecture for NVIDIA Omniverse[™]

Medium

2U Hyper 4 FHFL DW GPUs Compute Optimized Architecture

GPU Workstation 4-GPU Rackmount/Full Tower